

Operations Manual

8621 Hwy 6 Hitchcock, TX 77563 409-986-9800 www.rcsystemsco.com

Table of Contents

Appendix	хA	Table of FiguresI
Chapter :	1	Safety Information1
1.1	Safet	ty Information – Read Before Installation and Applying Power1
1.2	Cont	acting RC Systems Inc1
Chapter 2	2	General Description2
Chapter	3	Installation Instructions3
3.1	Selec	ting a Location3
3.2	Mou	nting the Enclosure
3.3	Powe	er and Analog Outputs Wiring4
3.3.3	1	SenSmart 4000
3.3.2	2	SenSmart 5000
3.4	Optic	on Board Wiring6
3.4.2	1	SenSmart 5000 RS 485 Option Board6
3.4.2	2	SenSmart 5000 Relay Option7
3.5	Rem	ote Sensor Installation8
3.5.2	1	SenSmart 5000 Remote Sensor8
3.6	Sens	or Installation and Replacement9
3.7	Smai	rt Sensors9
Chapter 4	4	General Operating Instructions10
4.1	Intro	duction10
4.2	Gene	eral Setup for SenSmart 4000 and SenSmart 500010
4.3	Norn	nal Operation11

4.4	Faul	t Condition
4.5	Alar	m Conditions11
4.5.	1	SenSmart 4000
4.5.	2	SenSmart 500012
Chapter	5	Calibration Procedure13
5.1	Prep	paration
5.2	Rou	tine Calibration Procedure15
5.3	Burr	p Test Procedure
Chapter	6	Maintenance Procedure17
6.1	Reg	ular Maintenance17
6.2	Sens	for Replacement
Appendi	хA	Gas Detector Specifications18
Appendi	хB	Sensor Specifications20
Appendi	хC	Modbus Table and Operations22
System		
	n Regi	sters
Relay F	_	sters
	Regist	
	Regist Regis	ers
Sensor	Regist Regis el Reg	ers
Sensor Channe	Regist Regis el Reg	ers
Sensor Channe Appendi	Regist Regis el Reg x D Gen	ers
Sensor Channe Appendi D.1	Regist Regis el Reg x D Gen .1	ers

D.2 Su	pported Variables
D.2.1	Primary Variables
D.2.2	Dynamic Variables
D.3 Lis	st of Universal Commands
D.3.1	Command 0 – Read Unique Identifier34
D.3.2	Command 1 – Read Primary Variable
D.3.3	Command 2 – Read Loop Current and Percent of Range
D.3.4	Command 3 – Read Dynamic Variables and Loop Current
D.3.5	Command 6 – Write Polling Address
D.3.6	Command 7 – Read Loop Configuration
D.3.7	Command 8 – Read Dynamic Variable Classifications
D.3.8	Command 9 – Read Device Variables with Status
D.3.9	Command 11 – Read Unique Identifier Associated with Tag40
D.3.10	Command 12 – Read Message42
D.3.11	Command 13 – Read Tag, Descriptor, Date43
D.3.12	Command 14 – Read Primary Variable Transducer Information43
D.3.13	Command 15 – Read Device Information44
D.3.14	Command 16 – Read Final Assembly Number45
D.3.15	Command 17 – Write Message45
D.3.16	Command 18 – Write Tag, Descriptor, Date46
D.3.17	Command 19 – Write Final Assembly Number47
D.3.18	Command 20 – Read Long Tag47
D.3.19	Command 21 – Read Unique Identifier Associated with Long Tag48

D.3.20	Command 22 – Write Long Tag50
D.3.21	Command 38 – Reset Configuration Changed Flag50
D.3.22	Command 48 – Read Additional Device Status51
D.4 Dat	a-Types
D.4.1	Packed Serial Number52
D.4.2	Packed Ascii52
D.4.3	Latin-1 Characters
D.4.4	Date53
D.4.5	Time53
D.5 Perf	formance54
D.5.1	Tertiary Variable (Device Status) Codes54
D.5.2	Multidrop Support54
D.5.3	HART Menu Descriptions55
D.6 HAF	RT Data Details
D.6.1	Extended Status (Common Table 17)57
D.6.2	Units Codes (Common Table 2)57
D.6.3	HART Documents
Appendix E	Menu Navigation59
Appendix A	Output Settings60
Appendix F	Ordering Information
Appendix G	Frequently Asked Questions67
Appendix H	Channel States
Appendix I	Drawings70

Drawings70

Appendix A Table of Figures

Figure 1 Mounting Dimensions
Figure 2 SenSmart 4000
Figure 3 SenSmart 5000 Wiring5
Figure 4 SenSmart 5000 Modbus Option Wiring
Figure 5 SenSmart 5000 Relay Option Wiring7
Figure 6 Remote Sensor Option
Figure 8 Stainless Steel Sensor Head9
Figure 9 Universal Gas Detector Data Display Screens11
Figure 10 SenSmart 5000 Fault Screen11
Figure 11 SenSmart 5000 Alarm Screens12
Figure 12 Calibration Diagram14
Figure 13 Calibration Menu Flowchart15
Figure 15 Mounting Dimensions70
Figure 16 10-0517 CPU Board71
Figure 17 10-0533 I/O Board71
Figure 18 10-0531 Modbus Board72
Figure 19 10-0529 2.4 GHz Board72
Figure 20 10-0530 900 MHz Board73
Figure 21 10-0532 Modbus/Relay Board73
Figure 22 10-0535 4-20mA Output
Figure 23 10-0534 Battery Board74

Chapter 1 Safety Information

1.1 Safety Information – Read Before Installation and Applying Power

The following symbols are used in this manual to alert the user of important instrument operating issues:

This symbol is intended to alert the user to the presence of important operating and maintenance (servicing) instructions.

This symbol is intended to alert the user to the presence of dangerous voltage within the instrument enclosure that may be sufficient magnitude to constitute a risk of electric shock.

WARNINGS:

- WARNING- EXPLOSION HAZARD DO NOT REPLACE FUSE UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.
- WARNING- EXPLOSION HAZARD DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.
- Use a properly rated CERTIFIED AC power (mains) cable installed as per local or national codes
- A certified AC power (mains) disconnect or circuit breaker should be mounted near the controller and installed following applicable local and national codes. If a switch is used instead of a circuit breaker, a properly rate CERTIFIED fuse or current limiter is required to be installed as per local or national codes. Markings for positions of the switch or breaker should state (I) for on and (O) for off.
- Clean only with a damp cloth without solvents.
- Equipment not used as prescribed within this manual may impair overall safety.

1.2 Contacting RC Systems Inc.

To contact RC Systems Inc., call, fax, email or write: 409–986-9800 FAX 409-986-9880 Email: info@rcsystemsco.com 8621 Hwy. 6 Hitchcock, TX 77563 Or visit us on the Web at www.rcsystemsco.com

Chapter 2 General Description

The Universal Transmitter Series consists of a common processor board connected to various combinations of input output options. The models are based on wired communications; and powering as follows:

SenSmart 4000 – Low-power, 4-20mA loop powered gas detector for toxic and oxygen detection. Includes a 4-20mA output.

SenSmart 5000 – 10-30VDC powered gas detector for toxic, oxygen, combustible, VOC and CO2 detection. This model adds a color backlit LCD display and has Modbus and/or 4-20mA communications and relays available.

All models use RC Systems latest Smart Sensor technology, providing smarter gas detection with simplified solutions.

SenSmart 4000

SenSmart 5000

Chapter 3 Installation Instructions

3.1 Selecting a Location

Factors such as air movement, gas density in relation to air, emission sources and environmental variables affect correct sensor location.

Air movement by fans, prevailing winds and convection should be carefully evaluated to determine if a leak is more likely to raise gas levels in certain areas within the facility.

Vapor density of a gas determines if it will rise or fall in air when there are no significant currents. Lighter than air gases should have the detector mounted 12 to 18 inches (30 to 45 cm) above the potential gas leak, and heavier than air gases should be this distance below the potential gas leak.

The Universal Series of gas detectors are designed for rugged service in the field. However, sensors should always be protected from environmental damage from water, snow, shock, vibration and dirt.

3.2 Mounting the Enclosure

Install the detector to a wall or bracket using the predrilled mounting flanges with I.D. 0.25 on 5-inch centers (*Figure 1*). If conduit is rigid and able to support the weight of the universal detector, the mounting bolts may be omitted.

After you have determined the appropriate location for your gas detector, it is important to securely mount the gas detector using the predrilled mounting flanges on the enclosure. Dimensions for the mounting holes can be found for both the aluminum and poly enclosures in Figure 3-1.

Figure 1 Mounting Dimensions

3.3 Power and Analog Outputs Wiring

WARNING: Qualified personnel should perform the installation according to applicable electrical codes, regulations and safety standards. Ensure correct cabling and sealing fitting practices are implemented. Do not aim the sensor pointing upward.

Modular design simplifies the installation of the universal gas detectors. A top display assembly is mounted with captive thumbscrews and is easily removed to access field-wiring terminals. Option boards mount to the back of the display assembly, and power, input and output wires mount to the power supply board.

3.3.1 SenSmart 4000

The SenSmart 4000 is powered through a non-polar 4-20mA loop connected to TB2. Connect the +10-30VDC/4-20mA loop wires to TB2.1 and TB2.2 on the 2-wire 4-20mA Output Board (*Figure 2*).

Figure 2 SenSmart 4000

3.3.2 SenSmart 5000

The SenSmart 5000 is 10-30VDC powered and have a dedicated 4-20mA output terminal. Connect the 10-30VDC Positive wire to terminal TB2.1. Connect the 10-30VDC Negative (Common) wire to terminal TB2.3. Connect the 4-20mA signal wire to terminal TB2.5 on the I/O (*Figure 3*).

Figure 3 SenSmart 5000 Wiring

3.4 Option Board Wiring

3.4.1 SenSmart 5000 RS 485 Option Board

The RS 485 Option (Figure 4) adds a single Modbus master port and a single Modbus slave port.

For the Modbus master port, connect your Modbus communication wires to terminals TB1.A and TB1.B, and connect your shield wire to TB1.SHLD.

For the Modbus slave port, connect your Modbus communication wires to terminals TB2.A and TB2.B, and connect your shield wire to TB2.SHLD. Note that there are two sets of terminals labeled TB2.A and TB2. B. This allows you to connect multiple SenSmart 5000 gas detectors in series. Each SenSmart 5000 represents an RS-485 slave and must have a unique Remote ID address (slave address). It is also important to note that wiring should be daisy chained as opposed to a star pattern for reliable operation. RC Systems recommends using shielded twisted pair cable such as Belden 3106A.

TB1 – RS485 Modbus Master Port

TB2 – RS485 Modbus Slave Port

Figure 4 SenSmart 5000 Modbus Option Wiring

3.4.2 SenSmart 5000 Relay Option

The SenSmart 5000 Relay option (*Figure 5*) includes three programmable relays and a single programmable RS 485 Modbus master or slave port. The relay labeled "FAILSAFE" is set up as a failsafe Fault relay by default but can be configured as a programmable relay in the **Relay Settings** menu. It is possible to use only the relays, only Modbus or both.

The relay terminals are labeled NO (Normally Open), NC (Normally Closed) or C (Common, or pole). These designators correspond to the shelf, or de-energized, state of the relays. When a relay is in Failsafe mode, it is energized when the alarm condition is not met, and therefore its action is reverse of the designators.

For the RS-485 Modbus master/slave port, connect your Modbus communication wires to terminals TB1.A and TB1.B, and connect your shield wire to TB1.SHLD.

TB1 – RS485 Modbus Master/ Slave Port

TB2 – Relay Terminals

Figure 5 SenSmart 5000 Relay Option Wiring

3.5 Remote Sensor Installation

3.5.1 SenSmart 5000 Remote Sensor

Use of the Remote Sensor Option Board requires the SenSmart 5000 to be equipped with a RS 485 Option or Relay Option Board. The Remote Sensor Option Board communicates to the SenSmart 5000 by utilizing one of the RS-485 communication ports located on the option board.

Connect 24VDC and ground wires to the 24V and GND terminals on TB1 or TB2 of the Remote Sensor Option Board to supply the necessary 24V. Connect the A and B terminals of TB1 or TB2 of the Remote Sensor Option Board to the A and B Master Port terminals of the Relay/RS-485 Option Board.

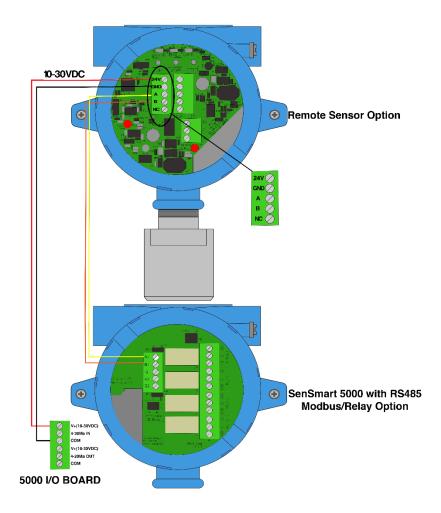


Figure 6 Remote Sensor Option

3.6 Sensor Installation and Replacement

The Universal Gas Detector series of monitors utilize RC Systems' Gen II Smart Sensors. These sensors come factory installed and provide our highest level of performance with increased accuracy and signal to noise ratio. The 8-conductor Smart Sensor interface connector attaches to the J1 connector on the base board, and the detector detects the type of sensor automatically. This makes it easier than ever to switch from any of our electrochemical Smart Sensors to any of our bridge (infrared, catalytic bead and PID) Smart Sensors without having to reconfigure wiring.

3.7 Smart Sensors

WARNING: Prior to performing sensor replacement ensure the area has been declassified.

To install a new sensor, simply remove the sensor head cap, remove the old sensor assembly and align the alignment arrows on the new sensor assembly with the sensor head body and press the sensor assembly toward the sensor head body until it has fully seated in the connector. The sensor board should be flush with the edge of the sensor head body when fully seated. Reinstall the sensor head cap and follow the on-screen prompts to upload the sensor settings into the gas detector.

Important: Sensor assembly must be **fully inserted** into the sensor head body when tightening the sensor head cap. Failure to do so could result in damage to the sensor and/or the sensor head body.

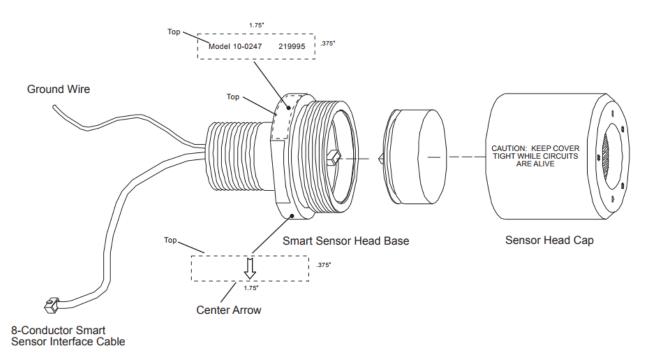


Figure 7 Stainless Steel Sensor Head

Chapter 4 General Operating Instructions

4.1 Introduction

Swiping a magnetic wand past the *Edit* key, from any of the **Data Display** screens, displays the **Main Menu**. The *Up* and *Down* keys maneuver the selection bar up and down and *Edit* selects the highlighted item to enter the sub-menus. All items with a sub-menu are indicated by a right facing arrow at the end of the line. To edit menu item values, swipe the *Edit* key, and use the *Up* and *Down* keys to edit the value. Once the desired value is entered, swipe the *Edit* key again to save the value. Swipe the *Next* key to reverse out of a sub-menu.

Important: Some values require a **Technician Sequence** to be entered to change their values. This is to prevent the operator from inadvertently changing the values. When prompted to "Enter technician sequence:" simply swipe the *Up* key four times to unlock the value for editing.

4.2 General Setup for SenSmart 4000 and SenSmart 5000

After ensuring proper installation perform the following steps:

- 1. Apply power to the gas detector
- 2. Verify the detector has begun startup.

Note: Once the detector is on the data screen, you may notice high or low values out of the full-scale range. These values should quickly return to the zero-gas value if no gas is present. No false alarms should be indicated at this time as the zero-gas value will be transmitted by the detector during the user-defined warmup delay period (up to 5 minutes).

- 3. Using the magnetic interface, navigate the menus to ensure:
 - a) Alarm levels for Alarm 1, 2 and 3 are set to the desired value

Note: SenSmart 5000 series gas detectors have optional relays, which should also be set up at this time. When no relays are installed, alarms are indicated only by the display color and/or alarm LEDs.

- b) Time and date are set correctly
- c) Engineering units are set to the desired value
- d) Calibration span gas value is set to the value of the calibration gas that will be used to perform initial calibration
- e) Calibration marker is set to the desired value (this is the value the output will be held at during calibration and the calibration purge delay)
- 4. After sensor has stabilized, perform routine sensor calibration in accordance with Chapter 5.

4.3 Normal Operation

During normal operation the sensor data is displayed on one of three data display screens as shown below. To cycle through the data display screens, use a magnet and swipe the *Next* key until the desired screen is reached.

Figure 8 Universal Gas Detector Data Display Screens

4.4 Fault Condition

The Fault alarm is used to indicate a condition when there is a failure from the sensor or an out of range state has been reached. It is recommended to set the fault alarm level to -10% of the span value. For example, if an H2S sensor is installed with a span value of 100, the fault should be set at -10, or if an oxygen sensor is installed with a span value of 25, the fault setting should be -2.5.

If relays are installed, the Fault relay is always Failsafe. This is necessary for the relay to de-energize in the event there is a loss of power, so that a Fault will be indicated.

If relays are not installed, a Fault condition will only be indicated by the display color changing to red and/or the red Fault LED flashing.

Figure 9 SenSmart 5000 Fault Screen

4.5 Alarm Conditions

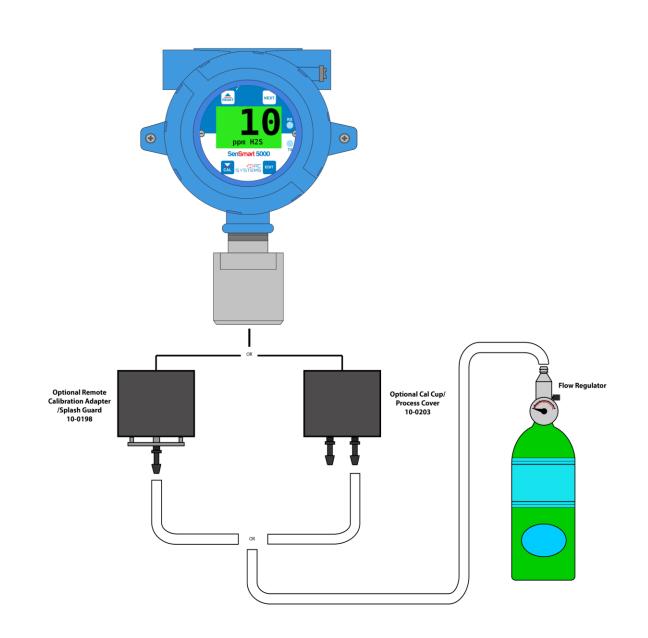
4.5.1 SenSmart 4000

Alarm levels are user configured. When an alarm condition is met the alarm condition will be indicated by the alarm LED flashing.

4.5.2 SenSmart 5000

The SenSmart 5000 allows the user to select the color associated with a certain alarm level. Options include yellow, orange, red, blue and purple. Alarm 1 is always set to yellow, and the Fault alarm is always set to Red.

Figure 10 SenSmart 5000 Alarm Screens


When an alarm level is reached, the display will change to the user defined color and the alarm level will flash on the display. If Latching is turned on, the alarm will stay enabled until the user acknowledges the alarm, even if the alarm condition has cleared.

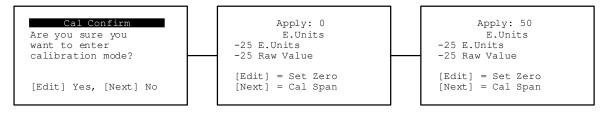
Chapter 5 Calibration Procedure

5.1 Preparation

Calibration is the most important function for ensuring correct operation of the Universal Series of gas detectors. The CAL MODE is designed to make calibration quick, easy and error free, and a successful Zero and Span calibration requires only four keystrokes. The 4-20mA output transmits 3mA during the calibration, and 4mA during calibration purge to prevent alarms. After 5 minutes of inactivity the gas detector will exit calibration mode automatically.

- RC Systems recommends performing calibrations
 - ✓ Immediately prior to placing a gas detector in service
 - ✓ Any time a new sensor is installed
 - ✓ Every six months for routine calibrations (more often if sensor is known to have been exposed to gas for extended periods of time)
 - ✓ Periodic bump tests are recommended if detector has potentially been exposed to incompatible gases to ensure correct operation
- Follow these calibration guidelines to ensure proper operation of your RC Systems, Inc. gas detector:
 - Calibration accuracy is only as good as the calibration gas accuracy. RC Systems recommends calibration gases with National Institute of Standards and Technology (NIST) traceable accuracy to increase the validity of the calibration.
 - ✓ Do not use gas cylinders beyond their expiration date.
 - ✓ Calibrate a new sensor before it is put in use.
 - ✓ Allow the sensor to stabilize before starting calibration.
 - ✓ Calibrate on a regular schedule. RC Systems recommends once every 6 months, depending on use and sensor exposure to poisons and contaminants.
 - ✓ Calibrate only in a clean atmosphere, free of background gas.

Prior to beginning your calibration make sure you have the following items:


- 1. A cylinder of calibration gas with concentration equal to the SPAN GAS VALUE setting (RC Systems typically recommends choosing a value at 50% of full scale.)
- 2. A cylinder of Zero Air (unless you are confident there is no target gas potentially present in the area)
- 3. A flow regulator, a fixed flow of 0.5LPM is recommended for most applications, but some instances may require a 1.0LPM fixed flow regulator.
- 4. A Calibration Cup or Calibration Adaptor
- 5. Sufficient length of flexible tubing to connect the regulator to the calibration adaptor

5.2 Routine Calibration Procedure

Use the following step-by-step procedure to perform Zero and Span calibrations (Figure 1-2 may be used for reference to the Menus.):

Note: The first three steps must be performed before the timer in the bottom right corner expires, 15 seconds, otherwise the SenSmart 6000 will exit back to the Data Display Screen.

- 1. Enter Calibration mode from any of the Data Display Screens by swiping the Down/Cal key.
- 2. Swipe the *Edit* key to enter Cal Mode.
- 3. Apply a clean Zero Gas (Figure 9), using the Calibration Cup or be sure there is no background target gas in the monitored area. After the reading is stable, swipe the *Edit* key to set the Zero Calibration. To skip the Zero calibration, and go to the Span calibration, swipe the *Next* key. Once a message that the Zero calibration was completed successfully has been displayed, proceed to the next step.
- 4. Apply the correct, as indicated, span gas (Figure 9). After the reading is stable, swipe the *Edit* key to set the Span Calibration. To skip the Span Calibration, swipe the *Next* key. When a message that the Span Calibration was completed successfully is displayed, the gas detector will exit back to the Data Display Screen.
- 5. Remove the calibration gas. Once the Cal Purge Delay has expired, normal alarm and relay functionality will be restored.

Calibration history records are logged and may be viewed in the Sensor Information.

5.3 Bump Test Procedure

Note: A bump test, when performed correctly, is meant to check both sensor and alarm functionality. This results in expected alarms, and proper precautions should be taken.

Also known as a functionality test, a bump test is not meant to test the accuracy of the detector, and no calibration settings are changed during the test.

To perform a bump test, briefly expose the sensor to a gas of known concentration (above the Low Alarm set point), and check to ensure the display reading increases to a value within tolerance of the concentration applied and check for alarm actuation. If the sensor does not perform as expected, RC Systems recommends performing a routine calibration and/or replacing the sensor. If the alarm does not perform as expected check the detector's alarm settings.

Chapter 6 Maintenance Procedure

6.1 Regular Maintenance

RC Systems recommends performing calibrations at regular intervals to ensure proper functionality of the Universal Gas Detector. During routine calibration, RC Systems recommends a visual inspection of sensor head, enclosure and conduit entries to check for cleanliness and physical integrity. Cleaning the detector is recommended when necessary but be aware that some cleaning compounds may be detected by an operational detector depending on the sensor type. So, proper precautions should be taken.

RC Systems recommends calibrations:

- ✓ Immediately prior to placing a gas detector in service
- ✓ Any time a new sensor is installed
- ✓ Every six months for routine calibrations (more often if sensor is known to have been exposed to gas for extended periods of time)
- ✓ Periodic bump tests are recommended if detector has potentially been exposed to incompatible gases to ensure correct operation

6.2 Sensor Replacement

When a sensor has reached its end of life, it is necessary to replace the sensor. For sensor replacement instructions, refer to <u>Chapter 3.7</u>.

Appendix A Gas Detector Specifications

	SenSmart 4000	SenSmart 5000								
CERTIFICATIONS										
CSA Certification	CSA Certification Class I, Div 1, Groups A, B, C, D; Class I, Zone 1, Group IIC, T4 Class I, Div 2, Groups A, B, C, D; Class I, Zone 2, Group IIC, T4									
ENVIORNMENTAL										
Operating Temperature	-40°C	C to +60°C								
SPECIFICATIONS										
Power Supply	Loop Powered 10-30VDC at <.75 watt	10-30 VDC at <6.5 watts with relay board (all relay energized)								
Display	2.1" x 1.2" (53.9 x 31mm) and 64 x 128 pixel LC	D w/ 30-min trend, bar graph and engineering units								
Backlight	N/A	RGB Color Backlight for Alarm Indication								
Standard Output	2-wire 4-20mA 600Ω Max with nominal 24VDC power supply	3-wire 4-20mA current source 750Ω Max with nominal 24VDC power supply								
Optional Outputs	N/A	RS-485 MODBUS master/slave ports 3x programmable Form C (SPDT) 5A @30VDC(240~VAC) Resistive alarm relays								
SENSOR SPECIFICA	TIONS									
Sensor Type	Electrochemical toxic and oxygen Low Power Combustible & CO2 IR	Electrochemical toxic and oxygen Catalytic Bead Infrared Photoionization Analog 4-20mA current input								
INSTALLATION										
Housing	Aluminum with epoxy paint #316 stain	less steel, Ul94 Poly Black Plastic Enclosure								
Wire Gauge	Spring type t	oower and Modbus) 12AWG terminals 16AWG 841 (2-wire) Belden 9842 (4-wire) or equivalent								
Warranty	5 year limited warranty. For sensor	warranty see sensor specifications sheet								
Dimensions	Dimensions (Aluminum) W 5.4" (137 mm), H 8" (203 mm), D 5" (127 mm) Shipping weight 6.5 pounds (3 kg) (Stainless Steel) W 5.4" (137 mm), H 8" (203 mm), D 5" (127 mm) Shipping weight 9.5 pounds (4 k (Poly) W 5" (127 mm), H 7" (178 mm), D 4" (101 mm) Shipping weight 3 pounds (2 kg)									

Figure 14 SenSmart 4000 and SenSmart 5000 Specifications Table

Appendix B Sensor Specifications

Target gas	Formula	Relateive Gas Density	TWA	IDLH	Min Span	Max Span
Acetaldehyde	C2H4O	1.5	200ppm	2000ppm (Ca)	30ppm	1500ppm
Acetylene	C2H2	0.91		asphyxiant		0-100% LEL
Ammonia	NH3	0.6	50ppm	300ppm	25ppm	1000ppm
Ammonia	NH3	0.6	50ppm	300ppm	1250ppm	5000ppm
Arsine	As H3	2.69	0.5ppm	3ppm		0.5ppm
Arsine	As H3	2.69	0.5ppm	3ppm		1ppm
Benzene	C6H6	2.6961	1ppm	500ppm	3ppm	25ppm
Butane	C3H8	1.55	1000ppm (pel)	2100ppm		0-100% LEL
Carbon Dioxide	CO2	1.53	5000ppm	40000ppm		0-100%vol
Carbon Dioxide	CO2	2.33	0.1ppm C	5ppm		5%/vol
Carbon Dioxide	CO2	1.53	5000ppm	40000ppm		5%/vol
Carbon Dioxide	CO2	1.53	5000ppm	40000ppm		1.5%/vol
Carbon Monoxide	СО	0.97	50ppm	1200ppm	40ppm	5000ppm
Chlorine	CI2	2.47	1ppm C	10ppm	5ppm	20ppm
Chlorine Dioxide	CIO2	2.33	0.1ppm C	5ppm	2ppm	6ppm
Combustible	Hydrocarbons	varies		asphyxiant		100%LEL
Ethane	, C2H6	1.07		asphyxiant		0-100% LEL
Ethanol	C2H6O	1.6	1000ppm	3300ppm		0-100% LEL
Ethylene	C2H4	0.98	200ppm	asphyxiant		0-100% LEL
Ethyl Alcohol	C2H6O	1.59	1000ppm	3300ppm	40ppm	3300ppm
Ethylene Oxide	C2H4O	1.49	<0.1ppm (Ca)	800ppm (Ca)	2ppm	100ppm
Flourine	F2	1.31	0.1ppm	25ppm		1ppm
Hexane	C6H14	2.97	500ppm	1100ppm		0-100% LEL
Hydrazine	N2H4	1.1	C 0.03ppm (Ca)	50ppm (Ca)		100% LLL
Hydrogen	H2	0.07		asphyxiant	250ppm	5000ppm
Hydrogen	H2	0.07		asphyxiant	500ppm	10000ppm
Hydrogen	H2	0.07		asphyxiant	5000ppm	40000ppm or 100%LE
lydrogen Chloride	HCI	1.27	5ppm C	50ppm	20ppm	100ppm
Hydrogen Cyanide	HCN		ST 4.7ppm	50ppm	35ppm	100ppm
	HF	0.94				
Hydrogen Flouride			3ppm	30ppm	10ppm	10ppm
Hydrogen Sulfide Methane	H2S	1.19 0.6	20ppm	100ppm	5ppm	2000ppm
	CH4			asphyxiant	5%/vol (100%LEL)	100%/vol
Methane	CH4	0.6		asphyxiant		0-100% LEL
Methane	CH4	0.6		asphyxiant		0-100% LEL
Nitric Oxide	NO	1.04	25ppm (pel)	100ppm	10ppm	250ppm
Nitric Oxide	NO	1.04	25ppm (pel)	100ppm	70ppm	500ppm
Nitrogen Dioxide	NO2	2.62	5ppm C	20ppm	15ppm	20ppm
Nitrogen Dioxide	NO2	2.62	5ppm C	20ppm	25ppm	200ppm
Oxygen	02	1.1		19.50%		25%/vol
Ozone	03	1.66	0.1ppm	10ppm	510ppb	2ppm
Pentane	C5H12	2.487	1000ppm	1500ppm		0-100% LEL
Phosphine	PH3	1.18	0.3ppm	50ppm	5ppm	10ppm
Propane	C3H8	1.55	1000ppm (pel)	2100ppm		
Propane	C3H8	1.55	1000ppm (pel)	2100ppm		0-100% LEL
Propane	C3H8	1.55	1000ppm (pel)	2100ppm		0-100% LEL
Propylene	C3H6	1.45		asphyxiant		0-100% LEL
Silane	Si H4	1.11	5ppm	asphyxiant	45ppm	50ppm
Sulfur Dioxide	SO2	2.26	5ppm	100ppm	10ppm	100ppm
Sulfur Dioxide	SO2	2.26	5ppm	100ppm	100ppm	2000ppm

ТҮРЕ Т50 Т90		TEMP °F	Relative Humidity (non- condensing)	Application Notes	A1	A2	А3	
PID		<3	-40° to 131°	0 to 99%		20%	40%	60%
IR	<5	<10	-40° to 158°	up to 99%	Millenium sensor	20%	40%	60%
EC	<20	<60	-4° to 104°	15 to 90%		20%	40%	60%
EC	<30	<90	-4° to 104°	15 to 90%		20%	40%	60%
EC	<20	<60	-4° to 104°	20 to 95%		20%	40%	60%
EC		<30	-4° to 104°	10 to 95%	Available with or without H2S filter	20%	40%	60%
PID		<3	-40° to 131°	0 to 99%		20%	40%	60%
IR		<30	-4° to 122°	0 to 95%		20%	40%	60%
IR	<15	<30	-4° to 122°	0 to 95%	Specify span when ordering	20%	40%	60%
IR	<5	<10	-40° to 158°	up to 99%	Millenium sensor	20%	40%	60%
IR		<30	-4° to 122°	0 to 95%	Low power IR in development	20%	40%	60%
IR		<30	-4° to 122°	0 to 95%	Low power IR	20%	40%	60%
EC		<30	-4° to 122°	15 to 90%		20%	40%	60%
EC		<60	-4° to 122°	15 to 90%		20%	40%	60%
EC		<60	-4° to 122°	15 to 90%		20%	40%	60%
СВ	3	8	-4° to 158°	0 to 100%		20%	40%	60%
IR	<5	<10	-40° to 158°	up to 99%	Millenium sensor	20%	40%	60%
IR	<5	<10	-40° to 158°	up to 99%	Millenium sensor	20%	40%	60%
IR	<5	<10	-40° to 158°	up to 99%	Millenium sensor	20%	40%	60%
PID		<3	-40° to 131°	0 to 99%		20%	40%	60%
EC		<200	-22° to 122°	15 to 90%		20%	40%	60%
EC	<30	<80	14° to 104°	15 to 90%		20%	40%	60%
IR	<5	<10	-40° to 158°	up to 99%	Millenium sensor	20%	40%	60%
EC	<30	<120	14° to 104°	20 to 95%		20%	40%	60%
EC		<80	-22° to 122°	15 to 90%		20%	40%	60%
EC	<40	<70	-4° to 104°	16 to 90%		20%	40%	60%
EC	<40	<60	-4° to 104°	15 to 95%		20%	40%	60%
EC		<200	-22° to 122°	15 to 90%		20%	40%	60%
EC		<120	-22° to 122°	15 to 90%		20%	40%	60%
EC		<90	-4° to 104°	15 to 90%		20%	40%	60%
EC		<55	-22° to 122°	15 to 90%		20%	40%	60%
IR		<30	-4° to 122°	0 to 95%	Specify span when ordering	20%	40%	60%
IR		<30	-4° to 122°	0 to 95%	Low power IR	20%	40%	
IR	<5	<10	-40° to 158°	0 to 99%	Millenium sensor	20%	40%	60%
EC		<30	-22° to 122°	15 to 90%		20%	40%	60%
EC		<75	-22° to 122°	15 to 90%		20%	40%	60%
EC		<60	-22° to 104°	15 to 85%		20%	40%	60%
EC		<40	-4° to 122°	15 to 90%		20%	40%	60%
EC		<15	-22° to 131°	5 to 95%		19	18	17
EC		<150	-4° to 122°	15 to 90%		20%	40%	60%
IR	<5	<10	-4° to 122	up to 99%	Millenium sensor	20%	40%	60%
EC		<20	-22° to 122°	15 to 90%	Witten all sensor	20%	40%	60%
IR		<30	-22 to 122 -4° to 122°	0 to 95%		20%	40%	
IR	<5	<10	-4 to 122	0 to 99%	Millenium sensor	20%	40%	60%
IR		<30	-40 to 158	0 to 95%	Low power IR	20%	40%	609
IR			-4 to 122 -40° to 158°				40%	609
EC	<5	<10 <60		up to 99%	Millenium sensor	20%		609
EC			-4° to 104°	10 to 95%			40%	
		<40	-22° to 122°	15 to 90%		20%	40%	60%
EC		<30	-22° to 122°	16 to 90%		20%	40%	60%

Appendix C Modbus Table and Operations

The Universal Gas Detector series may be equipped with two optional (10-0388 Relay/RS-485 Modbus Option Board) RS-485 boards where the 10-0388 Relay board can be set up as master or slave, and the RS-485 Modbus Option board can be set up as master and slave (base 1).

The Modbus slave ports allow function code 3 (write coil), as well as function code 6, and 16 (write holding registers). These function codes can be used to write configuration parameters to the Universal Gas Detectors. Writing parameters that span multiple register (such as 32bit floating points) requires function code 16. All registers must be written at once.

The following table describes the Universal Gas Detector series Modbus slave database. Any portion of this data may be read by a Modbus master device such as a PC, PLC or DCS. Since the Modbus port is RS-485, multiple Universal Gas Detectors may be multi-dropped onto the same cable.

System Registers

Input Registers						
Тад	Address	Туре	Function Code to Read	Function Code to Write	Size	Notes
Packed Status	31000	Unsigned Integer	4	N/A	1	0- OK 1- Alarm 1 2- Alarm2 3- Alarm3 4- Fault 5- Warmup 6- Inhibited 7- Zero Calibration 8- Calibration Span 9- Calibration Purge 10- Calibration Mode 11- Diagnostics Mode 12- Value Error (Calibration needed or Channel State Over range) 13- Sensor Error (Channel State Corrupted, Channel State Over range, Channel State Mismatch, Channel State No Sensor, Channel State Sensor Error, Channel State Comm Error, Channel State Comm Error, Channel State Scaling Error)
Analog Output	31001	Unsigned Integer	4	N/A	1	12-bit value; 800 = 4mA; 4000 = 20mA
Sensor Life	31009	Integer	4	N/A	1	16-bit signed integer 1 to 100 1 indicates Calibration Required
Temperature	31011	32-Bit Floating Point	4	N/A	2	16-bit integer 1 to 4095 scaled for - 55°C to +125°C
4-20mA(mA)	31210	32-Bit Floating Point	4	N/A	2	32-bit floating point
Bridge Supply(V)	31220	32-Bit Floating Point	4	N/A	2	32-bit floating point
Bridge Out(V)	31224	32-Bit Floating Point	4	N/A	2	32-bit floating point
Version	32002	Unsigned Integer	4	N/A	1	Factory use only

Boot Date	32006	Date	4	N/A	2	Last Power up date
Boot Time	32009	Time	4	N/A	2	Last Power up Time
Holding Registers						
Alarm Reset	40001	Command write 1 to activate	3	6	1	Write to acknowledge alarm
Set Unity	40002	Command write 1 to activate	3	6/16	1	
Start Inhibit	40003	Command write 1 to activate	3	6/16	1	
Stop Inhibit	40004	Command write 1 to activate	3	6/16	1	
Name	40010	Packed Character String	3	6/16	1	16-character ASCII text
Date	40020	Date	3	6/16	2	Current Data
Time	40023	Time	3	6/16	2	Current Time
Warmup Time	40027	Integer	3	6/16	1	Warm up delay (minutes)
Cal Purge Time	40028	Integer	3	6/16	1	Cal purge delay (minutes)
Block Negative	40029	Selection	3	6/16	1	0-Clear 1-Triggered 1 prohibits display of values < 0
Comm Mode	40030	Selection	3	6/16	1	0-Modbus slave 1-Remote sensor MODBUS serial port #1
Baud Rate	40031	Selection	3	6/16	1	0 -9600 1 - 19200 2 - 38400 3 - 57600 4 - 115200
Parity	40032	Selection	3	6/16	1	0- None 1- Even 2-Odd
Remote ID	40033	Integer	3	6/16	1	
Byte Order	40036	Selection	3	6/16	1	0-ABCD 1-CDAB 2-BADC 3-DCBA
Comm 1 LED Enable	40038	Selection	3	6/16	1	0-No 1-Yes
Comm 1 Term Resistor	40039	Selection	3	6/16	1	O-No 1-Yes

Comm 2 LED Enable	40048	Selection	3	6/16	1	0-No 1-Yes
Comm 2 Term Resistor	40049	Selection	3	6/16	1	0-No 1-Yes

Table 1 System Registers

Relay Registers

Input Registers						
Тад	Address	Туре	Function Code to Read	Function Code to Write	Size	Notes
Standard Relay 1 State	32020	Selection	4	N/A	1	0-Clear 1-Triggered
Standard Relay 2 State	32021	Selection	4	N/A	1	0-Clear 1-Triggered
Standard Relay 3 State	32022	Selection	4	N/A	1	0-Clear 1-Triggered
Warmup	32025	Selection	4	N/A	1	0-No 1-Yes
Standard Relay 1 Flashing	32026	Selection	4	N/A	1	0-No 1-Yes
Standard Relay 2 Flashing	32027	Selection	4	N/A	1	0-No 1-Yes
Standard Relay 3 Flashing	32028	Selection	4	N/A	1	0-No 1-Yes
Holding Registers						
Relay 1 Source	40106	Selection	3	6/16	1	0-Alarm 1 1-Alarm 2 3-Alarm 3 3-Fault 4-Cal Mode 5-Cal Zero 6-Cal Span 7-Disabled
Relay 1 Acknowledge	40107	Selection	3	6/16	1	0-No 1-Yes
Relay 1 Failsafe	40108	Selection	3	6/16	1	0-No 1-Yes
Relay 1 Refresh Time	40109	Integer	3	6/16	1	

Relay 2 Source	40116	Selection	3	6/16	1	0-Alarm 1 1-Alarm 2 3-Alarm 3 3-Fault 4-Cal Mode 5-Cal Zero
						6-Cal Span 7-Disabled
Relay 2 Acknowledge	40117	Selection	3	6/16	1	0-No 1-Yes
Relay 2 Failsafe	40118	Selection	3	6/16	1	0-No 1-Yes
Relay 2 Refresh Time	40119	Integer	3	6/16	1	
Relay 3 Source	40126	Selection	3	6/16	1	0-Alarm 1 1-Alarm 2 3-Alarm 3 3-Fault 4-Cal Mode 5-Cal Zero 6-Cal Span 7-Disabled
Relay 3 Acknowledge	40127	Selection	3	6/16	1	0-No 1-Yes
Relay 3 Failsafe	40128	Selection	3	6/16	1	0-No 1-Yes
Relay 3 Refresh Time	40129	Integer	3	6/16	1	

Table 2 Relay Registers

Sensor Registers

Input Registers						
T		T	Function Code to	Function Code to	C:	Notos
Тад	Address	Туре	Read	Write	Size	Notes
Send Sensor Life	40153	Selection	3	6/16	1	0-No 1-Yes
Contact Info String	40160	Packed Character String	3	6/16	1	16 ASCII characters (2 per register)
Security	40182	Selection	3	6/16	1	0-Unlocked 1-Locked
Measurement Name	40401	Packed Character String	3	6/16	1	16 ASCII characters (2 per register)
E. Units	40423	Packed Character String	3	6/16	1	10 ASCII characters (2 per register)
PGA Gain	40433	Integer	3	6/16	1	Contact Factory
Zero Setpoint	42001	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt
Span Setpoint	42003	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt
Zero Value	42005	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt
Span Value	42007	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt
Fault Value	42009	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt
Alarm 1 Setpoint	42011	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt
Alarm 2 Setpoint	42013	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt
Alarm 3 Setpoint	42015	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt
Calibration Gain	42017	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt
Calibration Offset	42019	32-Bit Floating Point	3	6/16	2	Modbus 32-bit IEEE 754 Floating Pt

Table 3 Sensor Registers

Channel Registers

Input Registers		_				
Тад	Address	Туре	Function Code to Read	Function Code to Write	Size	Notes
Alarm 1 Status	33017	Selection	4	N/A	1	0-No 1-Yes
Alarm 1 Flashing	33018	Selection	4	N/A	1	0-No 1-Yes
Alarm Status	33019	Selection	4	N/A	1	0-No 1-Yes
Alarm Flashing	33020	Selection	4	N/A	1	0-No 1-Yes
Alarm 3 Status	33021	Selection	4	N/A	1	0-No 1-Yes
Alarm 3 Flashing	33022	Selection	4	N/A	1	0-No 1-Yes
Fault Status	33023	Selection	4	N/A	1	0-No 1-Yes
Comm Error	33024	Selection	4	N/A	1	True if comm error
Config Error	33025	Selection	4	N/A	1	True if config error
I/O Error	33026	Selection	4	N/A	1	True if input/output error
Calibration Flag	33027	Selection	4	N/A	1	True if calibration in progress
Error Flashing	33030	Selection	4	N/A	1	True if channel error
Value	33065	32-Bit Floating Point	4	N/A	2	
Holding Registers				-		
Тад	Address	Туре	Function Code to Read	Function Code to Write	Size	Notes
Alarm 1 Latch	43001	Selection	3	6/16	1	0-No 1-Yes
Alarm 1 Trip	43002	Selection	3	6/16	1	0-High 1-Low
Alarm 1 On Delay	43003	Integer	3	6/16	1	Activation delay in seconds
Alarm 1 Off Delay	43004	Integer	3	6/16	1	Deactivation delay in minutes
Alarm 1 Deadband%	43005	Integer	3	6/16	1	Percent of scale
Alarm 2 Latch	43011	Selection	3	6/16	1	0-No 1-Yes

Alarm 2 Trip	43012	Selection	3	6/16	1	0-High 1-Low
Alarm 2 On Delay	43013	Integer	3	6/16	1	Activation delay in seconds
Alarm 2 Off Delay	43014	Integer	3	6/16	1	Deactivation delay in minutes
Alarm 2 Deadband%	43015	Integer	3	6/16	1	Percent of scale
Alarm 2 Color	43016	Selection	3	6/16	1	0-Red 1- Orange 2-Blue
Alarm 3 Latch	43021	Selection	3	6/16	1	0-No 1-Yes
Alarm 3 Trip	43022	Selection	3	6/16	1	0-High 1-Low
Alarm 3 On Delay	43023	Integer	3	6/16	1	Activation delay in seconds
Alarm 3 Off Delay	43024	Integer	3	6/16	1	Deactivation delay in minutes
Alarm 3 Deadband%	43025	Integer	3	6/16	1	Percent of scale
Alarm 3 Color	43026	Selection	3	6/16	1	0-Red 1- Orange 2-Blue
Alarm 3 Enabled	43027	Selection	3	6/16	1	0-No 1-Yes
Data From	43031	Selection	3	6/16	1	0-Sensor 1-Remote Sensor 2-4-20mA
Min Raw	43032	Unsigned Integer	3	6/16	1	Binary (800)
Max Raw	43033	Unsigned Integer	3	6/16	1	Binary (4000)
Remote ID	43034	Integer	3	6/16	1	Binary
Remote ID	43042	Integer	3		1	
Balance	43077	Integer	3	6/16	1	
Decimal Points	43079	Selection	3	6/16	1	Number of decimal points
Deadband(%)	43081	Integer	3	16	1	Modbus 32-bit IEEE 754 Floating Pt
Filter Count	43090	Integer	3	6/16	1	Binary ;0 to 60
Polarity	43092	Selection	3	6/16	1	Binary
Bridge Voltage	43093	32-Bit Floating Point	3	16	2	Modbus 32-bit IEEE 754 Floating Pt
Heater Enabled	43096	Selection	3	6/16	1	0-No 1-Yes
Heater Setpoint	43097	32-Bit Floating Point	3	16	2	Modbus 32-bit IEEE 754 Floating Pt

Temp Comp -40C	43099	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp -30C	43103	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp -20C	43107	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp -10C	43111	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp 0C	43115	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp 10C	43119	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp 20C	43123	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp 30C	43127	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp 40C	43131	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp 50C	43135	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Temp Comp 60C	43139	Temperature Comp	3	16	4	32-bit FP Gain ;32-bit FP Offset
Sensor Type	43143	Selection	3	6/16	1	0-None, 1-EC, 2-Bridge, 3-Low Power IR
Cal mA Setting	43145	32-Bit Floating Point	3	16	2	Modbus 32-bit IEEE 754 Floating Pt

Table 4 Channel Registers

Appendix D HART Option

D.1 General Description

D.1.1 Background

HART (Highway Addressable Remote Transducer) allows digital data to be superimposed on a conventional 4-20mA loop. The HART transmitter uses varying frequencies to communicate "0" or "1" to a HART receiver. The normal 4~20mA signal is transmitted via a sine wave, which averages to zero. This allows the digital communications of HART to be superimposed on the same transmission without disturbing the analog signal.

HART is a master-slave protocol. This means the field device only replies when it is polled for information, such as, remote configurations, diagnostics, identification, and management purposes.

SenSmart 5000 HART Communication has been implemented using HART 7.0, and is backwards compatible with existing implementations.

SenSmart 5000 HART can be used in Multidrop configuration to allow for up to 15 devices to share the same master on the same 4~20mA loop wiring.

SenSmart 5000 HART allows for a primary master and secondary master. Typically, this will be used with a controller as the primary, and a handheld communicator as a temporary secondary master.

D.1.2 Communication Settings

To connect a device to the HART loops, please use the following settings:

Baud Rate = 1200 baud Data Bits = 8 Stop Bits = 1 Parity = Odd

Flow Control = None

D.1.3 Device Description File

You can find our Device Description file at: https://www.rcsystemsco.com/downloads

This will allow your DCS or handheld device to communicate and process variables.

D.2 Supported Variables

D.2.1 Primary Variables

Primary Variable – Gas Concentration:

- Sensor reading without Decimal point, filter, or block negative settings taken into account
- Units Codes will reflect the E-units of sensor
 - Supported Units Codes: ppm, PCTLEL, and % Vol

Secondary Variable – Sensor Temperature

• Sensor temperature communicated in °C

Tertiary Variable – Transmitter Status

- Communicates current alarms, errors, or other statuses
- See Section 5.1 for more information

Quaternary Variable – Not implemented

D.2.2 Dynamic Variables

Loop Current:

-Represents the current output on 4-20mA

Percent Range:

-Represents 4-20mA reading as 0-100%. (4mA = 0% and 20mA = 100%)

D.3 List of Universal Commands

D.3.1 Command 0 – Read Unique Identifier

Description – Returns identity information about the field device. Command 0 is the only command that can respond to a short frame address (Polling address 0-15). Command will only reply if the short address matches the device.

<u>Request</u> – None

<u>Response</u> –

Byte	Description	Data Type
0	"254" - Constant integer	Unsigned-8
1-2	Expanded Device Type	Enum-16
	Default = 0xE60B	
3	Minimum number of preambles for request from master to slave	Unsigned-8
	Default = 5	
4	Hart Protocol Major Revision	Unsigned-8
	Default = 7	
5	Device Revision Level	Unsigned-8
	Default = 1	
6	Software revision level	Unsigned-8
	Default = 1	
7	(Most Significant 5 bits) Hardware revision level	Unsigned-5
	Default = 1	

		1
7	(Least Significant 3 Bits) Physical Signaling Code	Enum-3
	Default = 0	
8	Flags	Bit Field
9-11	Device ID: Serial Number of the device	Unsigned-24
		Packed Serial Number
12	Number of preambles in response from slave to master	Unsigned-8
	Default = 5	
13	Last Device Variable Code: Indicates last non-standard device variable code user should expect	Unsigned-8
	Default = 0	
14-15	Configuration Change Counter: number of changes that have occurred (CMD 6, 17, 18, 19, 22) since the last CMD38 was received.	Unsigned-16
16	Extended Field Device Status	Bit Field
		See section 6.1 for more info
17-18	Manufacturer Identification Code	Enum-16
	Default = 0x618B	
19-20	Private Label Distributor Code	Enum-16
	Default = 0x618B	
21	Device Profile	Enum-8
	Default = 1	
		ı

D.3.2 Command 1 – Read Primary Variable

Description – Read Primary Variable

Request - None

Response -

Byte	Description	Data Type
0	Primary Variable Unit Code	Enum-8
1-4	Primary Variable Value (float)	Float

D.3.3 Command 2 – Read Loop Current and Percent of Range

Description – Reads Loop Current and Percent of Range. This should always match what can be measured by an ammeter

<u>Request</u> – None

<u>Response</u> –

Byte	Description	Data Type
0-3	Loop Current Value (in mA)	Float
4-7	Percent of Range (units of percent)	Float

D.3.4 Command 3 – Read Dynamic Variables and Loop Current

Description – Reads Primary Variable, Secondary Variable, Tertiary Variable, Quaternary Variable, and Loop Current

<u>Request</u> – None

Response –

Byte	Description	Data Type
0-3	Primary Variable Loop Current (in mA)	Float
4	Primary Variable Units Code	Enum-8
5-8	Primary Variable Value	Float
9	Secondary Variable Units Code	Enum-8
10-13	Secondary Variable Value	Float
14	Tertiary Variable Units Code	Enum-8
15-18	Tertiary Variable Value	Float
19	Quaternary Variable Units Code	Enum-8
20-23	Quaternary Variable Value	Float

D.3.5 Command 6 – Write Polling Address

Description – Writes Polling Address and Loop Current Mode.

<u>Request</u> –

Byte	Description	Data Type
0	Polling Address of Device (0-15) Default = 0	Unsigned-8
1	Loop Current Mode Default = Enabled	Enum-8

Response –

Byte	Description	Data Type
0	Polling Address of Device (0-15)	Unsigned-8
1	Loop Current Mode	Enum-8

If Polling Address is set greater than or equal to 1, then Multidrop is enabled and the Loop Current Mode will be Disabled.

D.3.6 Command 7 – Read Loop Configuration

Description – Reads polling address & loop current mode

<u>Request</u> – None

<u>Response</u> –

Byte	Description	Data Type
0	Polling Address of Device (0-15)	Unsigned-8
	Default = 0	
1	Loop Current Mode	Enum-8

D.3.7 Command 8 – Read Dynamic Variable Classifications

Description – Communicates the classifications of all Dynamic Variables (PV, SV, TV, & QV)

<u>Request</u> – None

Response –

Byte	Description	Data Type
0	Primary Variable Classification	Enum-8
	Default = 90 (Concentration)	
1	Secondary Variable Classification	Enum-8
	Default = 64 (Temperature)	
2	Tertiary Variable Classification	Enum-8
	Default = 111 (Miscellaneous)	
3	Quaternary Variable Classification	Enum-8
	Default = 0 (Not Yet Defined)	

D.3.8 Command 9 – Read Device Variables with Status

Description – This Command will return up to 8 device variables to read. We currently only support our Primary Variables to be read

<u>Request</u> –

Byte	Description	Data Type
0	Slot 0 Device Variable Code	Unsigned-8
1	Slot 1 Device Variable Code	Unsigned-8
7	Slot 7 Device Variable Code	Unsigned-8

Response –

Byte	Description	Data Type
0	Extended field Device Status	Bit Field
		See section 6.1 for more info
1	Slot X: Device Variable Code	Unsigned-8
2	Slot X: Device Variable Classification	Enum
3	Slot X: Device Variable Units Code	Enum
4-7	Slot X: Device Variable Value	Float
8	Slot X: Device Variable Status	Bit Field
65-68	Slot 0 data timestamp	Time

See time data-type below for details

D.3.9 Command 11 – Read Unique Identifier Associated with Tag

Description – Uses the Tag to read unique identifier. Default Tag is "RC_HARTO". Only replies if Tag matches what is stored on the transmitter

<u>Request</u> –

Byte	Description	Data Type
0-5	Device Tag	Packed Ascii
	This is translated to 8 standard Ascii characters.	

<u>Response</u> – Same as CMD-0 response.

Byte	Description	Data Type
0	"254" - Constant integer	Unsigned-8
1-2	Expanded Device Type	Enum-16
	Default = 0xE60B	
3	Minimum number of preambles for request from master to slave	Unsigned-8
	Default = 5	
4	Hart Protocol Major Revision	Unsigned-8
	Default = 7	
5	Device Revision Level	Unsigned-8
	Default = 1	
6	Software revision level	Unsigned-8
	Default = 1	
7	(Most Significant 5 bits) Hardware revision level	Unsigned-5
	Default = 1	
7	(Least Significant 3 Bits) Physical Signaling Code	Enum-3
	Default = 0	
8	Flags	Bit Field
	Default = 0	

9-11	Device ID: Serial Number of the device	Unsigned-24
		Packed Serial Number
12	Number of preambles in response from slave to master	Unsigned-8
	Default = 5	
13	Last Device Variable Code: Indicates last non-standard device variable code user should expect	Unsigned-8
	Default = 0	
14-15	Configuration Change Counter: number of changes that have occurred (CMD 6, 17, 18, 19, 22) since the last CMD38 was received.	Unsigned-16
16	Extended Field Device Status	Bit Field
		See section 6.1 for more info
17-18	Manufacturer Identification Code	Enum-16
	Default = 0x618B	
19-20	Private Label Distributor Code	Enum-16
	Default = 0x618B	
21	Device Profile	Enum-8
	Default = 1	

D.3.10 Command 12 – Read Message

Description – Message is used as record keeping for master.

<u>Request</u> – None

Response –

Byte	Description	Data Type
0-23	Message	Packed Ascii
	This is translated to 32 standard Ascii characters	
	Default =DEFAULT MESSAGE	

D.3.11 Command 13 – Read Tag, Descriptor, Date

Description – Read the Tag, Descriptor, and Date for record keeping purposes

<u>Request</u> – None

<u>Response</u> –

Byte	Description	Data Type
0-5	Device Tag	Packed Ascii
	This is translated to 8 standard Ascii characters	
	Default = RC_HART0	
6-17	Descriptor	Packed Ascii
	This is translated to 16 standard Ascii characters	
	Default = HARTDESCRIPTOR	
18-20	Date	Standard HART Date Code

D.3.12 Command 14 – Read Primary Variable Transducer Information

Description – Reads the Transducer Information

Transducer limits and minimum span units code must match Primary Variable

<u>Request</u> – None

<u>Response</u> –

Byte	Description	Data Type
0-2	Transducer Serial Number	Unsigned-24 Packed Serial Number
3	PV Transducer Limits and Minimum Span Units Code	Enum-8
4-7	PV Upper Limit	Float
8-11	PV Lower Limit	Float
12-15	PV Minimum Span	Float

D.3.13 Command 15 – Read Device Information

Description – Reads various parameters of the device.

Damping Value equates to the sensor Dead-band

<u>Request</u> – None

<u>Response</u> –

Byte	Description	Data Type
0	PV Alarm Selection Code – Described behavior of Analog Output during Alarm Default = 251	Enum-8
1	PV Transfer Function Code	Enum-8

	Default = 0	
2	PV Upper & Lower Limit Units Code	Enum-8
3-6	PV Upper Range Value	Float
7-10	PV Lower Range Value	Float
11-14	PV Damping Value	Float
15	Write Protect Code – Indicates if Transmitter is Locked	Enum-8
16	Reserved (Set to 250)	Enum
17	PV Analog Channel flags	Bit Field

D.3.14 Command 16 – Read Final Assembly Number

Description – Read the Transmitter Serial Number, this matches CMD 0

<u>Request</u> – None

Response –

Byte	Description	Data Type
0-2	Final Assembly Number	Unsigned-24
		Packed Serial Number

D.3.15 Command 17 – Write Message

Description – Write a message to the device. This is just stored in data-base for master record keeping.

<u>Request</u> –

Byte	Description	Data Type
0-23	Message	Packed Ascii
	This is translated to 32 standard Ascii characters	

<u>Response</u> –

Byte	Description	Data Type
0-23	Message	Packed Ascii
	This is translated to 32 standard Ascii characters	

D.3.16 Command 18 – Write Tag, Descriptor, Date

Description – Assign new values for Tag, Descriptor, & Date for record-keeping purposes

<u>Request</u> –

Byte	Description	Data Type
0-5	Device Tag	Packed Ascii
	This is translated to 8 standard Ascii characters	
6-17	Descriptor	Packed Ascii
	This is translated to 16 standard Ascii characters	
18-20	Date	Standard HART Date Code

<u>Response</u> –

Byte	Description	Data Type
------	-------------	-----------

0-5	Device Tag	Packed Ascii
	This is translated to 8 standard Ascii characters	
6-17	Descriptor	Packed Ascii
	This is translated to 16 standard Ascii characters	
18-20	Date	Standard HART Date Code

D.3.17 Command 19 – Write Final Assembly Number

Description – Write Final Assembly Number

It is recommended that this not be changed. If you wish to, you can still do-so

<u>Request</u> –

Byte	Description	Data Type
0-2	Final Assembly Number	Unsigned-24
		Packed Serial Number

<u>Response</u> –

Byte	Description	Data Type
0-2	Final Assembly Number	Unsigned-24
		Packed Serial Number

D.3.18 Command 20 – Read Long Tag

Description – Read Long Tag for master record keeping

<u>Request</u> – None

Response –

Byte	Description	Data Type
0-31	Long Tag	Latin-1
	Default = "<<<<<< <rc_hart0>>>>>>>>>>>>></rc_hart0>	

D.3.19 Command 21 – Read Unique Identifier Associated with Long Tag

Description – Request Unique Identifier by using Long Tag. This won't reply unless the Long Tag matches what is stored in the transmitter

<u>Request</u> –

Byte	Description	Data Type
0-31	Long Tag	Latin-1

Response – Same as Command 0

Byte	Description	Data Type
0	"254" - Constant integer	Unsigned-8
1-2	Expanded Device Type	Enum-16
	Default = 0xE60B	
3	Minimum number of preambles for request from master to slave	Unsigned-8
	Default = 5	
4	Hart Protocol Major Revision	Unsigned-8
	Default = 7	

5	Device Revision Level	Unsigned-8
	Default = 1	
6	Software revision level	Unsigned-8
	Default = 1	
7	(Most Significant 5 bits) Hardware revision level	Unsigned-5
	Default = 1	
7	(Least Significant 3 Bits) Physical Signaling Code	Enum-3
	Default = 0	
8	Flags	Bit Field
	Default = 0	
9-11	Device ID: Serial Number of the device	Unsigned-24
		Packed Serial Number
12	Number of preambles in response from slave to master	Unsigned-8
	Default = 5	
13	Last Device Variable Code: Indicates last non-standard	Unsigned-8
	device variable code user should expect	
	Default = 0	
14-15	Configuration Change Counter: number of changes that have occurred (CMD 6, 17, 18, 19, 22) since the last	Unsigned-16
	CMD38 was received.	
16	Extended Field Device Status	Bit Field

		See section 6.1 for more info
17-18	Manufacturer Identification Code	Enum-16
	Default = 0x618B	
19-20	Private Label Distributor Code	Enum-16
	Default = 0x618B	
21	Device Profile	Enum-8
	Default = 1	

D.3.20 Command 22 – Write Long Tag

Description – Change the Long Tag stored on device.

<u>Request</u> –

Byte	Description	Data Type
0-31	Long Tag	Latin-1

<u>Response</u> –

Byte	Description	Data Type
0-31	Long Tag	Latin-1

D.3.21 Command 38 – Reset Configuration Changed Flag

Description – This command serves to reset the configuration change counter within the Command 0 information. The stored value needs to match the value sent in the request, otherwise the counter will not be reset.

<u>Request</u> –

Byte	Description	Data Type
0-1	Configuration Change Counter	Unsigned-16

<u>Response</u> –

Byte	Description	Data Type
0-1	Configuration Change Counter	Unsigned-16

D.3.22 Command 48 – Read Additional Device Status

Description – This command is not completely implemented.

Our Tertiary variable "Device Status", provides more information than this command.

The response will return all 0's

D.4 Data-Types

D.4.1 Packed Serial Number

The Serial Number is a custom data type formatted as "Model/Month/Day/Year/Number". For example, the first SenSmart 5000 produced on March 1st 2023 would have the serial number "5k030123001".

In order to communicate this number in a 3-byte variable we needed to create a packed data structure. For our purposes, we have taken our standard SN that is typically on the board as a sticker, and we have entered that into the system to communicate via HART.

Example :

Serial # on sticker : 5k101023322

Serial # entered into the unit : 101023322

Serial # compacted and communicated via HART: 0x A5 2F 42

D.4.2 Packed Ascii

Standard HART data-type that represents Ascii bytes as 6-bits

	Θ	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
Θx	@	А	В	С	D	Ε	F	G	Н	Ι	J	К	L	М	Ν	0
1x	Р	Q	R	S	т	U	V	W	X	Υ	Ζ	[\]	\wedge	_
2x	SP	!		#	\$	%	&	'	()	*	+	,	-		/
3	0	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?

Table 1. Packed ASCII Character Set

Note: Most significant hexadecimal digit top to bottom; least significant left to right.

D.4.3 Latin-1 Characters

Standard HART data-type that offers an expanded version of Ascii with many special characters

					T	able 3	. ISO	Latin-	1 Char	acters						
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
Θ																
1																
2	SP	!	-	#	\$	%	8c	'	()	٠	+		-		/
3	Θ	1	2	3	4	5	6	7	8	9	:	;	<	=	>	?
4	e	А	В	С	D	Е	F	G	Н	Ι	J	К	L	М	Ν	0
5	P	Q	R	S	Т	U	v	W	Х	Υ	Z]	`]	^	_
6	·	а	b	с	d	e	f	g	h	i	j	k	1	m	n	0
7	р	q	r	s	t	u	v	W	x	У	z	{		}	~	
8																
9																
A	NBSP	i	¢	£	121	¥	ł	ş		۰		~	~	SHY	۲	-
В	•	±	2	3	-	μ	¶			1	۰	20	34	1/2	強	ś
С	À	Á	Â	Ã	Ä	Â	Æ	Ç	È	É	Ê	Ë	Ì	Î	Î	ĭ
D	Ð	Ñ	ò	Ó	ô	õ	Õ	×	ø	Ù	Ú	Û	0	Ý	Þ	ß
E	à	á	â	ã	ä	â	æ	ç	è	é	ê	ĕ	1	1	î	ï
F	õ	ñ	ô	ó	ô	õ	ō	÷	ø	ù	ú	û	ü	ý	þ	9

Note: 1. 0x20 is a space character.

2. 0xA0 is a non-breaking space character.

3. Most significant hexadecimal digit top to bottom; least significant left to right.

D.4.4 Date

Standard HART data-type. Defined as 3-bytes consisting of 8-bit unsigned integers.

• Represented as Day/Month/Year

• Year is represented as : Year -1990

Example) 23/06/2021 is communicated as 0x17 06 79 which is equal to 23/06/121

HART Controller should interpret this for ease of use

D.4.5 Time

Standard HART data-type. 32-bit unsigned integer. Least Significant Bit is 1/32 ms. This variable is basically a representation of how many 1/32 ms periods have passed since midnight. To calculate this in hours, use the following equation:

Hours = Time / 115200000

D.5	Performance						
D.5.1	Tertiary Variable (D	evice Status) Codes					
0 — ОК		12 – Overrange					
1 – Alarm 1		13 – Calibration Needed					
2 – Alarm 2		14 – Fault					
3 – Alarm 3		15 – Mismatch					
4 – Calibrate Z	ero	16 – Communication Error					
5 – Calibrate S	pan	17 – Communication Configuration Error					
6 – Calibrate P	urge	18 – No Sensor Installed					
7 – Marker		19 – Corrupted Sensor					
8 – Warmup		20 – I/O Error					
9 – Inhibit		21 – Sensor Error					
10 – MFG		22 – Scaling Error					

11 – Diagnostic

D.5.2 Multidrop Support

R.C.-Systems 5000 HART supports Multidrop configuration. Multidrop can be enabled on the menus, or by changing the polling address via Command 6. If the polling address is greater than 0, Multidrop is automatically enabled.

During Multidrop mode, the analog output is fixed to 4mA. This helps all daisy-chained units to communicate on the same line with the same current value. These daisy-chained units are in parallel with eachother, so the current values are summed.

HART controller must be rated for this set-up. Power can be calculated as follows:

Power = Voltage * 4 * # of Transmitters in parallel

For a typical controller, it is rated for at least 20mA to allow for the standard 4~20mA analog reading. This would mean you can safely Multidrop 5 transmitters without worry, but ensure your controller's analog input rating before connecting additional units.

Multidrop Limitations:

The analog output is fixed to 4mA so the Analog Output is only being used for HART at that point. Additionally, HART takes roughly ½ second to communicate with 1 unit, this is multiplied every time a unit is added. For example, if 5 units are connected with Multidrop then the round-trip time is 2.5 seconds per message.

D.5.3 HART Menu Descriptions

Comm>HART

- LED Enable
 - Default: Yes
 - Select if you would like LEDs to blink when HART communication occurs. Top LED is Rx, bottom LED is Tx. Light will blink green for success, red for error
- Tag
 - Default: RC_HART0
 - Allows user to edit and view the Tag associated with device
 - User can change this with Command 18 and it will reflect changes here
- Descriptor
 - Default: HART__DESCRIPTOR
 - \circ $\;$ Allows user to edit and view the Descriptor associated with device
 - \circ User can change this with Command 18 and it will reflect changes here
- Enable Multidrop
 - This is a selection option that requires technician code
 - Code is "Up, Up, Up, Up"
 - \circ $\;$ User needs to confirm they would like to enable Multidrop
 - This selection will continue even if power is lost. Option will be reset during a cold-boot

- Multidrop Enabled
 - Once Multidrop is enabled, there will be a menu line showing this
 - User cannot interact with this item
- Polling Address
 - Default: 1
 - User can select the polling address between 1-15
 - This menu item will only display if Multidrop is enabled
- Disable Multidrop
 - This is a selection option that requires technician code
 - Code is "Up, Up, Up, Up"
 - User needs to confirm they would like to disable Multidrop
 - Do not disable Multidrop if there are other units still connected in parallel
 - This selection will continue even if power is lost. Option will be reset during a cold-boot

D.6 HART Data Details

D.6.1 Extended Status (Common Table 17)

Used in Command 0, 9, 11, 21. This is a condensed version of the tertiary variable (device status). User can see at a glance if one of these bits are set, then check the tertiary variable for more information. Extended status is a bitfield where each bit is defined as follows:

0x01 (0000001) = Maintenance Required

• Used if Device Status = Corrupted or Overrange

0x02 (0000010) = Device Variable Alert

• Used if Device Status = Alarm 1, Alarm 2, Alarm 3, or Fault

0x04 (00000100) = Critical Power Failure

• Not Used

0x08 (00001000) = Failure

Not Used

0x10 (00010000) = Out of specification

Not Used

0x20 (00100000) = Function Check

Not Used

D.6.2 Units Codes (Common Table 2)

There are over 200 possible unit codes, but for our purposes we will just define the ones we use.

- 32 Degrees Celsius
- 39 Milliamperes (mA)
- 50 Minutes
- 51 Seconds

52 – Hours

53 – Date

57 – Percent (%)

139 – Parts Per Million (ppm)

149 – Volume Percent (% Vol)

161 – Percent Lower Explosion Level (PCTLEL)

250 – Not Used

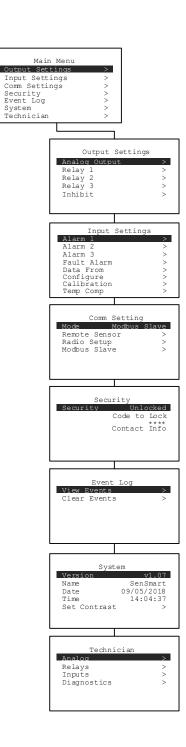
251 – None

252 – Unknown

NOTE – The following strings (not case-sensitive) are the only accepted inputs for their respective unit. Any other strings will result in unit code 252=Unknown. In order for units to be recognized and converted to a HART unit code, the first characters of the E.Units must match one of the following:

139 - Parts Per Million : "PPM"

149 – Volume Percent : "PCTVOL", "PCT VOL", "%VOL", "% VOL", OR "% [target gas]"


161 – Percent Lower Explosion Level : "PCTLEL", "PCT LEL", "%LEL", OR "% LEL"

D.6.3 HART Documents

For more information, please visit FieldComm for detailed HART information. You can also contact us for additional device information.

https://www.fieldcommgroup.org/hart-specifications

Appendix E Menu Navigation

Main Menus

Alarm Outputs

The Alarm Outputs Menu is accessed via the Main Menu, and is used to configure the mapping of the three programmable relays to the alarm setpoints, and relay configuration items such as Acknowledge, Failsafe and Override.

Input Settings

The Input Settings Menu provides access to user configurable input parameters. This includes Alarm settings for all three alarms, access to the data from menus (where you can adjust sensor settings for various types of sensors including sensor voltage for bridge type sensors), input configuration settings including tag name, engineering units and inCal mA, calibration span value, and the Temperature compensation table.

Com Settings

The Com Settings Menu provides access to the settings for the Modbus configuration, when installed.

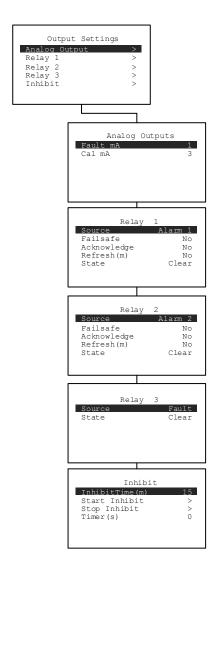
> Security

Allows the user to enter a passcode to restrict access to some settings

Event Log

The Event Log allows the user to view a list of recent events logged in the transmitter, and to clear the log. Events are logged in a first in first out manner.

> System


User adjustable items which effect the entire gas detector, and are not specific to either channel.

Technician

The Technician Menu provides access to a variety of useful troubleshooting screens to view ADC reading, Discrete I/O, Current input, Sensor life and access to the diagnostics mode for testing analog outputs, relay function and LED operation.

> Help

The Help Menu provides a QR Code link to this manual

Output Settings Menus

Analog Outputs

Appendix A

• Fault mA

Allows the user to configure the mA output when the detector is in the Fault condition. This is useful to indicate a fault condition on the connected control device.

Output Settings

o Cal mA

Allows the user to configure the mA output when the detector is in Cal Mode. This is useful to indicate a calibration condition on the connected control device.

Relay 1, 2, 3

• Source

The Source setting can be set to Alarm 1, Alarm 2, Alarm 3, Fault, Cal Mode, Cal Zero, Cal Span or Disabled. This setting determines which condition must be met in order for the relay to actuate.

o Failsafe

When set to Yes, Failsafe means the relay de-energizes during alarm and energizes with no alarm. This is useful for signaling an alarm on a loss of power. The dedicated Fault relay is always Failsafe.

Acknowledge

When set to Yes, Acknowledge means the *UP/RESET* key will set the relay to its normal state even if the alarm condition still exists. This can be useful for silencing audible devices driven from the relay.

o Refresh

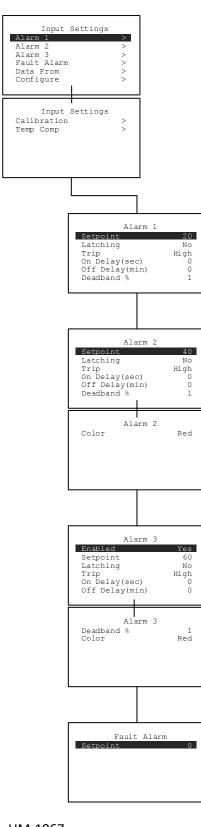
When enabled, this feature refreshes the relay for acknowledged alarms if the indicated time elapses and the alarm condition still exists

• State

Inhibit

0

>


Indicates the current state of the relay

Fault mA

The inhibit feature allows the user to inhibit outputs during a designated time period. Once the timer has been started all outputs will be blocked until the time has expired. Start Inhibit

- Start Inhibit
 Starts the inhibit timer
- Stop Inhibit
- Stops the inhibit timer
- Timer (s)

Indicates the time remaining on the inhibit timer in seconds

Input Settings Menus

Setpoint (Alarm 1, 2, 3 and Fault)

Setpoint enters the engineering unit value where the alarm will trip. It may be negative, and trip when monitored values fall out of range in this direction.

Latching (Alarm 1, 2, 3)

Setting Latching to YES causes the alarm to remain active even after the condition is gone, and to reset only when the *UP/RESET* key is swiped from a data display.

Trip (Alarm 1, 2, 3)

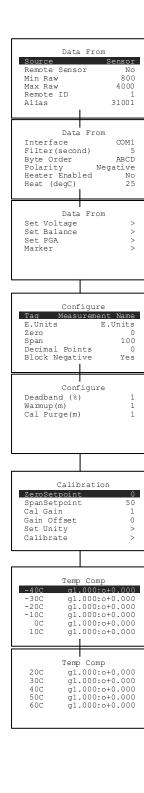
Set Trip to HIGH to have the alarm trip when the value goes above the setpoint. Set to LOW to trip when the value falls below the setpoint.

On Delay (sec) (Alarm 1, 2, 3)

On Delay allows entering a maximum 10 second delay before this alarm becomes active. This is useful for preventing spurious alarms by brief spikes beyond the alarm setpoint.

> Off Delay (min) (Alarm 1, 2, 3)

Off Delay allows entering a maximum 120-minute delay before clearing an alarm after the alarm condition is gone. This is useful for continuing an alarm function, such as operation of an exhaust fan, for a period of time after the alarm condition clears.

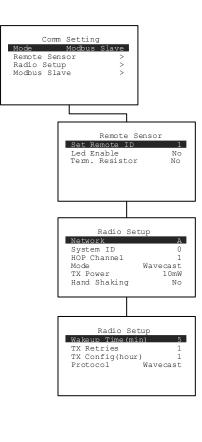

Deadband % (Alarm 1, 2, 3)

Deadband allows forcing low values to continue to read zero. This is useful when there are small amounts of background gases that cause fluctuating readouts above zero. The highest amount of Deadband allowed is 5%.

Color (Alarm 2, 3)

Selecting Color changes the color associated with the particular alarm. Options are Red, Blue, Purple and Orange.

Enabled (Alarm 3) Set to YES to enable Alarm 3 and NO to disable.



⊳

 \triangleright

Input Settings Menus (cont'd)

- Data From (certain menu items only show up depending on the input type)
 Source determines the type of sensor installed in the detector. E.g. bridge.
- **Source** determines the type of sensor installed in the detector. E.g. bridge, electrochemical, etc.
- Remote Sensor set to Yes indicates that the sensor is installed remotely with Remote sensor option.
- Min and Max Raw set the range of the input to the A/D converter. Normally set to 800/4000. Useful when the sensor's output doesn't provide a full range signal.
- o Remote ID is where the Modbus slave's ID number is entered
- Alias is the register number which defines the location of the variable representing the input value of the Modbus data received through the communication ports
- Interface assigns which communication port the Modbus slave is connected to and the detector will get its data from
- Filter (second) sets the number of seconds over which samples are averaged
- Byte Order determines WORD and BYTE alignment of data at the remote Modbus transmitter when sending this 4-byte IEEE floating point values
- o Polarity determines the polarity of the sensor
- o Heater Enabled determines if the sensor heater is turned on or off
- Heat (degC) is the thermostat setting of the sensor
- o Set Voltage set's the voltage being supplied to bridge type sensors
- Set Balance adjusts the balance of a catalytic bead sensor and must only be adjusted with ZERO gas on the sensor.
- Set PGA is the adjustment that matches the input signal range to the detectors input signal conditioning circuits.
- Marker used to detect special modes of operation from analog inputs, which some monitors use to indicate special modes of operation, such as calibration mode Configure
- Tag is a 16-character ASCII field typically used to describe the monitored point by user tag number or other familiar terminology.
- E. Units or engineering units may have up to 10 ASCII characters, and is usually factory configured based on sensor type.
- Zero defines the reading to be displayed when the output is 4mA (0%)
- Span defines the reading to be displayed when 20mA (100%) is the output.
- Decimal Points sets the resolution of the displayed reading, and may best to zero, one or two.
- o Block Negative blocks negative values from being display (Displays 0).
- Deadband (%) allows forcing low values to continue to read zero. This is useful when there are small amounts of background gases that cause fluctuating readouts above zero. The highest amount of Deadband allowed is 5%. Note: Deadband affects all outputs as well as the local reading.
- **Warmup (m)** defines the time allotted for sensor warmup. During this time output s will be held at a zero value and relays will stay in their normal state.
- Cal Purge (m) determines the amount of time the transmitter will stay in calibration mode after calibration is complete as the sensor returns to normal state.
 Calibration
- Zero Setpoint is set to the zero value.
- Span Setpoint is set to the calibration gas value, typically 50% of full scale.
- **Cal Gain** reflects the change made when calibrating.
- Gain Offset reflects the change made when calibrating.
- Gain Unity is to reset the Gain and Offset back to default (1 and 0 respectively)
- **Calibrate** is used to calibrate sensors.
- Temp Comp allows the user to adjust the gain and offset that is applied to sensors to compensate for temperature drift. Factory supplied sensors are preprogrammed with these values which are automatically uploaded from the Smart Sensor.

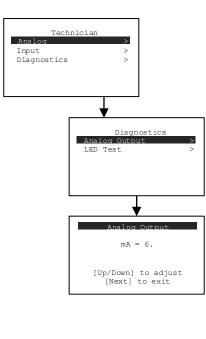
Comm Settings Menus

> Mode

Determines the mode of operation for the communication port.

Remote Sensor

- Set Remote ID is where the Modbus slave's ID number is entered
- LED Enable is to enable the serial communication LED.
- Term. Resistor is to enable the terminating resistor.
- Radio Setup
 - **Network** is where the network is selected from A-Z.
 - o System ID is to assign the device a unique ID
 - Hop Channel is set to match the server's Hop Channel
 - Mode is for switching between WaveCast and Legacy mode.
 - **Power** is the level of power for communicating with the selection of 10mW, 100mW, 200mW, 1W.
 - Hand Shaking
 - **Wakeup** is the amount of time set between normal transmitting
 - **TX Retries** is the amount of times the transmitter will try to transmit after failing to
 - **TX Config** is how often the transmitter will send the config information packet to the server
 - **Protocol** is for picking between the WaveCast and Legacy network protocol


Modbus Slave	
Baud Rate	9600
Parity	None
Remote ID	1
Byte Order	ABCD
LED Enable	No
Term. Resistor	No

Comm Settings Menus (cont'd)

Modbus Slave (when installed)

- Baud Rate allows users to set the data rate of the communication port. The options include 9600, 19200, 38400, 57600 and 115200.
- Parity is a bit that is added to ensure that the number of bits with the value "1" in a set of bits is even or odd. Parity bits are used as the simplest form of error detecting within code. The default is None.
- Remote ID is where the Modbus slave's ID number is entered
- Byte Order determines WORD and BYTE alignment of data at the remote Modbus transmitter when sending this 4-byte IEEE floating point values
- LED Enable enables the RX and TX LEDs to flash green on valid transmit and receive transmissions. For ports configured as master, the RX LED will flash red if there is a Comm Error or if an exception is received. Slave ports will cause the RX LED to flash red under the same conditions but can also cause the TX LED to flash red if an invalid function code is received or if the wrong register is given.

Sys	tem
Version	v1.07
Name	SenSmart
Date Time Set Contrast	03/22/2017 15:54:22 >

System Menus

Version

The version of firmware installed on the gas detector

Name

The user defined name of the gas detector. Swipe edit to change.

Date

Current Date. Swipe edit to change

> Time

Current time on 24 hour clock. Swipe edit to change

Set Contrast

This menu allows the user to adjust the display's contrast to make it lighter or darker

Technician Menus

Analog

Selecting Analog displays the current output from the analog output terminals in mA.

> Input

Displays the current input to the detector. Items displayed include input source, A/D counts, and display value.

Diagnostics

The Diagnostics Menu is entered by swiping the edit key, entering the technician's sequence (4 swipes of the UP key) and then swiping the edit key again.

• Analog Output

The Analog Output Diagnostics Menu is useful for troubleshooting the wiring of the analog output terminals. While in the menu, swipe the up and down keys to raise and lower the output from 0mA to 24mA.

o LED Test

Swiping Edit on the LED Test menu causes the two LEDs on the display to alternate on and off and change colors between red and green.

Appendix F Ordering Information

	(To configure your custom gas detector visit <u>www.rcsystemsco.com</u>)	
Part Number	Description	Reference
10-0517	SenSmart 4/5000 CPU Board	
10-0519	SenSmart 4000 and SenSmart 5000 Shield Board	
10-0531	SenSmart 5000 RS-485 Modbus Option Board	<u>6</u>
10-0532	SenSmart Relay and RS-485 Modbus Option Board	Z
10-0533	SenSmart 5000 I/O Board	5
10-0535	SenSmart 4000 Current Out Board	<u>5</u>
Accessories		
10-0198	Sensor Head Splash Guard with Remote Cal Port	
10-0203	Sensor Head Calibration Adaptor	
10-0270	Stainless Steel Duct Mount	
10-0379	PVC Duct Mount	
1000-2498	Gas Detector Stand	
1000-2499	Transmitter Pole Mount Bracket 1.5"	
10-0322	Magnetic Mounting Kit for Aluminum Enclosure	
10-0480	Magnetic Mounting Kit for Poly Enclosure	

Appendix G Frequently Asked Questions

How do I perform a calibration?

- To perform a calibration, please refer to Chapter 5. RC Systems recommends performing calibrations
 - ✓ Immediately prior to placing a gas detector in service
 - ✓ Any time a new sensor is installed
 - ✓ Every six months for routine calibrations (more often if sensor may have been exposed to gas for extended periods of time)
 - ✓ Periodic bump tests are recommended if detector has potentially been exposed to incompatible gases to ensure correct operation

Is there a Quick Start Guide available?

Yes, visit <u>www.rcsystemsco.com/downloads</u> for a complete list of all of our product materials available for download.

My universal gas detector is not responding to Modbus queries.

- Verify the Slave ID is correct (<u>Appendix 4</u>).
- Verify the Modbus master is polling the correct alias (<u>Appendix 4</u>).
- Verify Modbus wires are connected to the correct terminals (<u>Chapter 3.4</u>).

My universal gas detector is responding to gas but the controller is in fault.

- > Verify the analog signal wire is connected to the correct terminal at the monitor (<u>Chapter 3.3</u>).
- Verify the analog signal wire is connected to the correct terminal at the controller. For RC Systems controllers the HI terminal on the analog input board is where the signal wire connects.
- Verify monitor's 4-20 mA output by disconnecting the signal wire and measure across 4-20 output (+) and common (-) (<u>Chapter 3.3</u>).

My universal gas detector is reading NO SENSOR.

- Remove senor head cover and verify the Smart Sensor module is fully engaged in the Smart Sensor connector (<u>Chapter 3.6</u>).
- Verify the Smart Sensor connector is fully plugged into the Smart Sensor connection on the I/O board.

I can't loosen the XP enclosure cover.

Make sure the set screw has been loosened.

My universal gas detector is failing calibration.

Make sure the calibration gas is the proper concentration and gas type.

Be sure to follow the <u>calibration procedure</u>.

For Technical Support call **409-986-9800 x160** or email <u>support@rcsystemsco.com</u>.

Appendix H Channel States

Priority	Channel State	Screen Color	Description
1	MFG	Green	State when performing manufacturers checkout process
2	Diagnostic	White	Not visible since it is a menu item
3	Inhibit	Green	Used in PGA/Balance/Voltage screens
4	Corrupted	Red	Sensor Memory is corrupted
5	Sensor Error	Red	Sensor is found/valid, but failed to read information from the sensor
6	Type Error	Red	Sensor mismatch, and user failed to accept the sensor
7	No Sensor	Red	Sensor is not found
8	Cal Needed	Red	A calibration of the sensor is required
9	Comm Error	Red	Indicates timeout or invalid reply from Modbus device
10	I/O Error	Red	Indicates a failure to communicate between I/O board electronics
11	Config Error	Red	Indicates interface for Modbus is configured for something else
12	Warmup	Green	Indicates the detector is in the user defined warmup time period
13	Overrange	Current Alarm Color	Indicates the sensor is reading over the maximum allowable range
14	Cal Zero	Pink	Indicates calibration mode
15	Cal Span	Pink	Indicates calibration mode
16	Cal Purge	Pink	Indicates the detector is in the user defined cal purge time period
17	Fault	Red	Indicates a fault condition exists
18	Alarm 3	User Programmed	Indicates the Alarm 3 condition exists
19	Alarm 2	User Programmed	Indicates the Alarm 2 condition exists
20	Alarm 1	Yellow	Indicates the Alarm 1 condition exists

Appendix I Drawings

Drawings

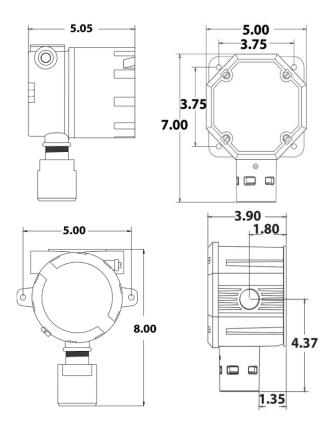


Figure 13 Mounting Dimensions

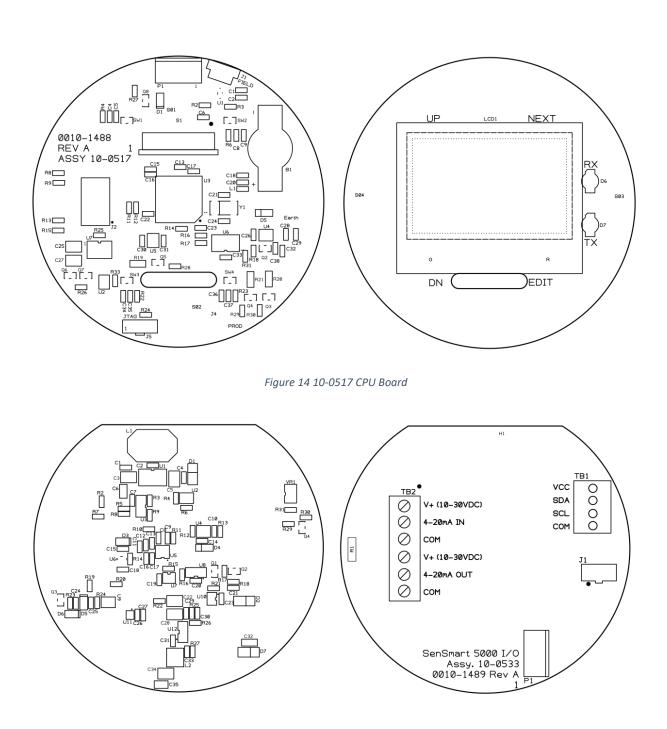


Figure 15 10-0533 I/O Board

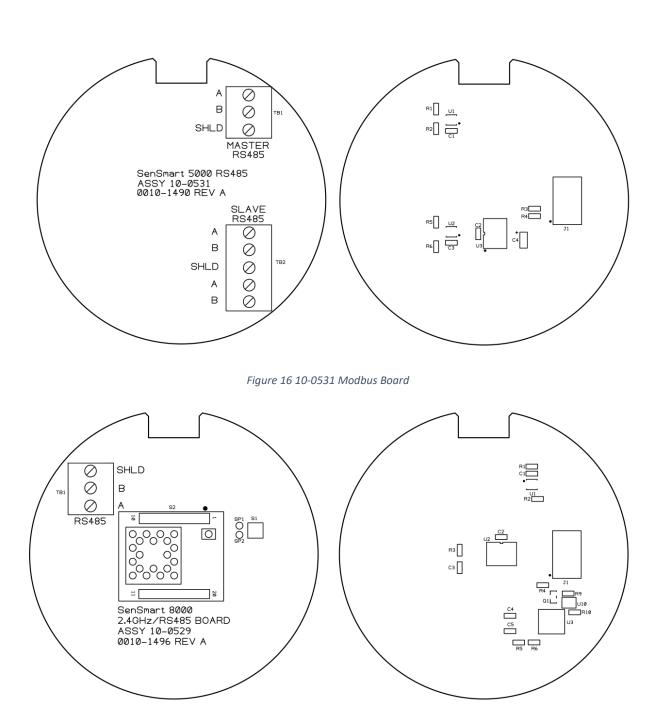


Figure 17 10-0529 2.4 GHz Board

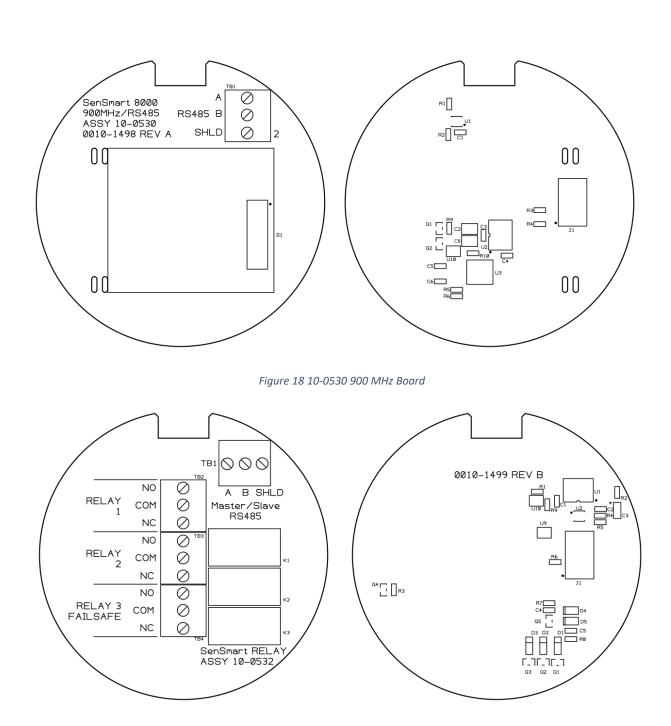


Figure 19 10-0532 Modbus/Relay Board

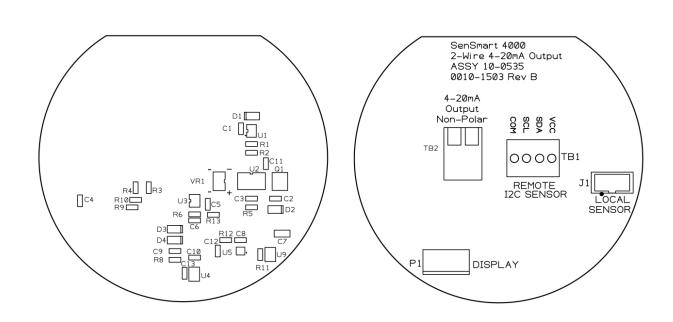


Figure 20 10-0535 4-20mA Output

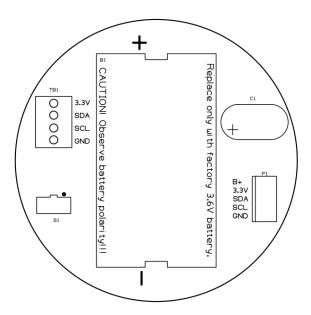


Figure 21 10-0534 Battery Board